Page 10«..9101112..»

Category : Nanomedicine

Nanomedicine – Wikipedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013.[5] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.

The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[6][7] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[8] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [9] or polymer-based nanoparticles,[10] can be designed to improve the pharmacokinetics and biodistribution of the drug.[11][12][13] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[14] When designed to avoid the body’s defence mechanisms,[15] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[16] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host’s reactions to nano- and microsized materials[15] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[17]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[18][19][20] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[21]

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[22] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[23][24] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[25] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[26] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[10]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient’s body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).[citation needed]

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.[citation needed]

Another highly efficient system for microRNA delivery for example are nanoparticles formed by the self-assembly of two different microRNAs deregulated in cancer.[27]

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:

Existing and potential drug nanocarriers have been reviewed.[38][39][40][41]

Nanoparticles have high surface area to volume ratio. This allows for many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[42] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility. Nanoparticles have the potential to overcome these problems.[43]

In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a “toxic trail” of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy (nanoparticle hyperthermia) .[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[44][45]

In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.[citation needed]

The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today’s organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.[citation needed]

Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[46] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[47]

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]

Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient’s blood.[48]Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[49]

Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better than in a conventional laboratory test. These devices that are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker. The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device.[50] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individuals tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer.[51]

Magnetic micro particles are proven research instruments for the separation of cells and proteins from complex media. The technology is available under the name Magnetic-activated cell sorting or Dynabeads among others. More recently it was shown in animal models that magnetic nanoparticles can be used for the removal of various noxious compounds including toxins, pathogens, and proteins from whole blood in an extracorporeal circuit similar to dialysis.[52][53] In contrast to dialysis, which works on the principle of the size related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification with nanoparticles allows specific targeting of substances. Additionally larger compounds which are commonly not dialyzable can be removed.[citation needed]

The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties.[54] Binding agents such as proteins,[53]antibodies,[52]antibiotics,[55] or synthetic ligands[56] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient allows exerting a force on the nanoparticles. Hence the particles can be separated from the bulk fluid, thereby cleaning it from the contaminants.[57][58]

The small size (

This approach offers new therapeutic possibilities for the treatment of systemic infections such as sepsis by directly removing the pathogen. It can also be used to selectively remove cytokines or endotoxins[55] or for the dialysis of compounds which are not accessible by traditional dialysis methods. However the technology is still in a preclinical phase and first clinical trials are not expected before 2017.[60]

Nanotechnology may be used as part of tissue engineering to help reproduce or repair or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight%) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[61][62] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.[citation needed]

For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[63] Another example is nanonephrology, the use of nanomedicine on the kidney.

Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[64] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body’s immune system.[65]

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][65][66][67] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation, with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999.[1]Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[68] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman’s theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) “swallow the doctor”. The idea was incorporated into Feynman’s 1959 essay There’s Plenty of Room at the Bottom.[69]

More:
Nanomedicine – Wikipedia

Recommendation and review posted by Alexandra Lee Anderson

What is nanomedicine? – Definition from WhatIs.com

Nanomedicine is the application of nanotechnology (the engineering of tiny machines) to the prevention and treatment of disease in the human body. This evolving discipline has the potential to dramatically change medical science.

Established and near-future nanomedicine applications include activity monitors, chemotherapy, pacemakers, biochip s, OTC tests, insulin pumps, nebulizers, needleless injectors, hearing aids, medical flow sensors and blood pressure, glucose monitoring and drug delivery systems.

Here are a few examples of how nanomedicine could transform common medical procedures:

The most advanced nanomedicine involves the use of nanorobot s as miniature surgeons. Such machines might repair damaged cells, or get inside cells and replace or assist damaged intracellular structures. At the extreme, nanomachines might replicate themselves, or correct genetic deficiencies by altering or replacing DNA (deoxyribonucleic acid) molecules.

In a 2006 publication on the worldwide status of nanomedicine, MedMarket Diligence reported that about 150 of the largest companies in the world are conducting nanotechnology research projects or planning nanotechnology products. According to Patrick Driscoll, President of MMD, there is a $1 billion market for nanotechnology applications, mostly in the area of MEMS (microelectromechanical systems), a figure that is likely to increase a hundred-fold by 2015.

This was last updated in May 2007

Contributor(s): Robert Freitas

See more here:
What is nanomedicine? – Definition from WhatIs.com

Recommendation and review posted by Alexandra Lee Anderson

Nanomedicine

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

Read the original post:
Nanomedicine

Recommendation and review posted by Alexandra Lee Anderson

CLINAM – The Foundation

CLINAM 9 / 2016 Conference and Exhibition

European & Global Summit for Cutting-Edge Medicine

June 26 29, 2016

Clinical Nanomedicine and Targeted Medicine –

Enabling Technologies for Personalized Medicine

Scientific Committee: Chairman Prof. Dr. med. Patrick Hunziker, University Hospital Basel (CH). MEMBERS Prof. Dr. Yechezkel Barenholz, Hebrew University, Hadassah Medical School, Jerusalem (IL). Dr. med. h.c. Beat Ler, MA, European Foundation for Clinical Nanomedicine, Basel (CH) Prof. Dr. Gert Storm, Institute for Pharmaceutical Sciences, Utrecht University, (NL) Prof. Dr. Marisa Papaluca Amati, European Medicines Agency, London (UK). Prof. Dr. med. Christoph Alexiou, University Hospital Erlangen (D) Prof. Dr. Gerd Binnig, Nobel Laureate, Munich (DE) Prof. Dr. Viola Vogel, Laboratory for Biologically Oriented Materials, ETH, Zrich (CH). Prof. Dr. Jan Mollenhauer, Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense (DK). Prof. Dr. med. Omid Farokhzad, Associate Professor and Director of Laboratory of Nanomedicine and Biomaterials, Harvard Medical School and Brigham and Women’s Hospital; Founder of BIND Therapeutics, Biosciences and Blend Therapeutics, Cambridge, Boston (USA) Prof. Dr. Dong Soo Lee, M.D. Ph. Chairman Department of Nuclear Medicine Seoul National University Seoul, Korea (invited) Prof. Dr.Lajos Balogh, Editorin in Chief, Nanomedicine, Nanotechnologyin, Biology and Medicine, Elsevier&nbsp and Member&nbsp of theExecutive Board, American Society for Nanomedicine in, Boston(USA) and other members.

Conference Venue: Congress Center, Messeplatz 21, 4058 Basel, Switzerland, Phone + 41 58 206 28 28, This email address is being protected from spambots. You need JavaScript enabled to view it. Organizers office: CLINAM-Foundation, Alemannengasse 12, P.B. 4016 Basel Phone +41 61 695 93 95, This email address is being protected from spambots. You need JavaScript enabled to view it.

In the previous eight years, the CLINAM Summit grew to the largest in its field with 12 presenting Noble Laureates and more than 500 participants from academia, industry, regulatory authorities and policy from over 40 different countries in Europe and worldwide. With this success and broad support by well beyond 20 renowned collaborating initiatives, the CLINAM-Summit is today one of the most important marketplaces for scientific exchange and discussions of regulatory, political and ethical aspects in this field of cutting edge medicine.

In particular, the CLINAM Summit emerged as exquisite forum for translation from bench to bedside, for European and international networking, and for industrial collaboration between companies, with academia, and point-of-contact with customers. The summit is presently the only place to meet the regulatory authorities from all continents to debate the needs of all stakeholders in the field with the legislators.

CLINAM 9/2016continues with its successful tradition to cover the manifold interdisciplinary fields of Clinical and Targeted Nanomedicine in major and neglected diseases. As special focus area, CLINAM 09/2016 adds translation and enabling technologies, including, for example, cutting-edge molecular profiling, nano-scale analytics, single cell analysis, stem cell technologies, tissue engineering, in and ex vivo systems as well as in vitro substitute systems for efficacy and toxicity testing.

CLINAM 09/2016covers the entire interdisciplinary spectrum of Nanomedicine and Targeted Medicine from new materials with potential medical applications and enabling technologies over diagnostic and therapeutic translation to clinical applications in infectious, inflammatory and neurodegenerative diseases, as well as diabetes, cancer and regenerative medicine to societal implications, strategical issues, and regulatory affairs. The conference is sub-divided into four different tracks running in parallel and provides ample possibilities for exhibitors as indicated by steadily increasing requests:

Track 1: Clinical and Targeted Nanomedicine Basic Research Disease Mechanisms and Personalized Medicine Regenerative Medicine Novel Therapeutic and Diagnostic Approaches Active and Passive Targeting Targeted Delivery (antibodies, affibodies, aptamers, nano drug delivery devices) Accurin Technology Nano-Toxicology Track 2: Clinical and Targeted Nanomedicine: Translation Unsolved Medical Problems Personalized Medicine and Theranostic Approaches Regenerative Medicine Advanced Breaking and Ongoing Clinical Trials Applied Nanomedical Diagnostics and Therapeutics Track 3: Enabling Technologies Nanomaterial Analytics and Testing Molecular Profiling for Research and Efficacy/Toxicology Testing (Genomics, Proteomics, Glycomics, Lipidomics, Metabolomics) Functional Testing Assays and Platforms Single Cell Analyses Cell Tracking Stem Cell Biology and Engineering Technologies Microfluidics Tissue Engineering Tissues-on-a-Chip Bioprinting In vivo Testing Novel Imaging Approaches Medical Devices Track 4: Regulatory, Societal Affairs and Networking Regulatory Issues in Nanomedicine Strategy and Policy The Patients` Perspective Ethical Issues in Nanomedicine University Village Cutting-Edge EU-Project Presentations Networking for International Consortium Formation

For CLINAM 9 / 16 Last Summit the number of exhibitors increased without investment of acquisition.As from the 9th Summit the CLINAM-Foundation has stepped in to a Partnership with The Congress Center Basel which will invest in a proactive acquisition and management for large foyer exhibition. Based on last years exhibition it is expected to have about 50 Exhibitors at thenext Summit. Exhibitors can profit of the possibility to meet their target visitors on one single spot in Basel at CLINAM 9 / 2016. With this new concept for the exhibition, the international CLINAM-summit becomes also the place for the pulse of the market and early sales in the field of cutting-edge medicine.

The exhibitors are invited to participate in the below in the nomenclature described fields. The list is topic to extensions so that by proposals from exhibitors it will constantly be updated. Strong focus of the exhibition relates to the topics of the conference in which Nanomedicine and Targeted Medicine – presently the most important building blocks in novel Medicine – are debated. The organizers look forward to the interest of the exhibitors to at a moderate investment take the opportunity to meet the community of Nanomedicine, Targeted Medicine and those investing into cutting edge Medicine tools and applications.

The CLINAM- Summit has every year 150 presentations. Many young mist skilled young researchers, young starting entrepreneurs, Engineers and scientists apply for posters and oral presentations. CLINAM offers a first Deadline for those, submitting their work before February 15, 2016 a discount of 20% on the registration fees for Submitters (610.00 ; for students 430.00 ) . The second Deadline after that is April 25, 2016

The Exhibitors at CLINAM 8/2015

The European Foundation for Clinical Nanomedicine is a non-profit institution aiming at advancing medicine to the benefit of individuals and society through the application of nanoscience. Aiming at prevention, diagnosis, and therapy through nanomedicine as well as at exploration of its implications, the Foundation reaches its goals through support of clinically focussed research and of interaction and information flow between clinicians, researchers, the public, and other stakeholders. The recognition of the large future impact of nanoscience on medicine and the observed rapid advance of medical applications of nanoscience have been the main reasons for the creation of the Foundation.

Nanotechnology is generally considered as the key technology of the 21st century. It is an interdisciplinary scientific field focusing on methods, materials, and tools on the nanometer scale, i.e. one millionth of a millimeter. The application of this science to medicine seeks to benefit patients by providing prevention, early diagnosis, and effective treatment for prevalent, for disabling, and for currently incurable medical conditions.

Link:
CLINAM – The Foundation

Recommendation and review posted by Alexandra Lee Anderson

Nanobiotechnology – Wikipedia, the free encyclopedia

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology.[1] Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created.[2] However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it.

The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.[3]

Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.[4]

The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological “machines” work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.[5][6] Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.[7]

In other words, nanobiotechnology is essentially miniaturized biotechnology, whereas bionanotechnology is a specific application of nanotechnology. For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology.

The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.

Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties(e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms s.a. mechanosensing), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing). The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology.

Nano-biotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with biosensors, particularly where photonics, chemistry, biology, biophysics, nano-medicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual polarization interferometry, are another example.

Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.

Nanomedicine is a field of medical science whose applications are increasing more and more thanks to nanorobots and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have done many improvements in the different devices and systems required to develop nanorobots. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy have been controlled, reduced and even eliminated, so some years from now, cancer patients will be offered an alternative to treat this disease instead of chemotherapy, which causes secondary effects such as hair lose, fatigue or nausea killing not only cancerous cells but also the healthy ones. At a clinical level, cancer treatment with nanomedicine will consist on the supply of nanorobots to the patient through an injection that will seek for cancerous cells leaving untouched the healthy ones. Patients that will be treated through nanomedicine will not notice the presence of this nanomachines inside them; the only thing that is going to be noticeable is the progressive improvement of their health.[8]

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of biochemicals and organic salts.[9]

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of Nanobacteria (25-200nm sized) as is done by NanoBiotech Pharma.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology.[10] All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the “natural” form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as “organic merging with synthetic.” Colonies of live neurons can live together on a biochip device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system – a logical component for molecular computing. Ned Seeman – a researcher at New York University – along with other researchers are currently researching concepts that are similar to each other.[11]

DNA nanotechnology is one important example of bionanotechnology.[12] The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties.[13]Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering.[14]

This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. dual polarization interferometry, recombinant DNA methods, etc.), theory (e.g. statistical mechanics, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation, supercomputing).

Continue reading here:
Nanobiotechnology – Wikipedia, the free encyclopedia

Recommendation and review posted by Alexandra Lee Anderson

Nanorobots in Medicine – Nanomedicine

Nanorobots in Medicine

Future applications of nanomedicine will be based on the ability to build nanorobots. In the future these nanorobots could actually be programmed to repair specific diseased cells, functioning in a similar way to antibodies in our natural healing processes.

Developing Nanorobots for Medicine

Design analysis for a cell repair nanorobot: The Ideal Gene Delivery Vector: Chromallocytes, Cell Repair Nanorobots for Chromosome Repair Therapy

Design analysis for an antimicrobial nanorobot: Microbivores: Artifical Mechanical Phagocytes using Digest and Discharge Protocol

A Mechanical Artificial Red Cell: Exploratory Design in Medical Nanotechnology

Nanorobots in Medicine: Future Applications

The elimination of bacterial infections in a patient within minutes, instead of using treatment with antibiotics over a period of weeks.

The ability to perform surgery at the cellular level, removing individual diseased cells and even repairing defective portions of individual cells.

Significant lengthening of the human lifespan by repairing cellular level conditions that cause the body to age.

Nanomedicine Reference Material

An online copy of volume one of the bookNanomedicine by Robert Freitas.

Chapter 7: “Engines of Healing” from the book Engines of Creation, The Coming Era of Nanotechnology by Eric Drexler

For a fun, fictionalized account of miniaturized medicine rent the 1966 movie Fantastic Voyage, or read the novelization of the movie by Isaac Asimov.

Institute of Robotics and Intelligent Systems

Nanomedicine Center for Nucleoprotein Machines

Related Pages

In about 20 years researchers plan to have the capability to build an object atom by atom or molecule by molecule. Molecular manufacturing, also called molecular nanotechnology will provide the ability to build the nanorobots needed for future applications of nanomedicine.

Read the rest here:
Nanorobots in Medicine – Nanomedicine

Recommendation and review posted by Alexandra Lee Anderson

Alcor: FAQ – Technical

Index – 1.General – 2.Technical – 3.Ethical – 4.Spiritual 5.Financial – 6.Membership – 7.Misinformed See also Scientists’ Cryonics FAQ

Q: What are nanotechnology and nanomedicine?

A: Molecular nanotechnology is an emerging technology for manufacturing and manipulating matter at the molecular level. The concept was first suggested by Richard Feynman in 1959. The theoretical foundations of molecular nanotechnology were developed by K. Eric Drexler, Ralph Merkle, and others in the 1980s and 1990s. More recently the future medical applications of nanotechnology have been explored in detail by Robert Freitas in his books, Nanomedicine Vol. I (Basic Capabilities) and Nanomedicine Vol. IIA (Biocompatibility). These scientists have concluded that the mid to late 21st century will bring an explosion of amazing capabilities for analyzing and repairing injured cells and tissues, similar to the information processing revolution that is now occurring. These capabilities will include means for repairing and regenerating tissue after almost any injury provided that certain basic information remains intact. A non-technical overview of nanotechnology, including an excellent chapter on cryonics (“biostasis”), is available in Eric Drexler’s book, Engines of Creation.

|top|

Q: Won’t memories be lost if brain electrical activity stops?

A: Short-term memory depends on electrical activity. However long-term memory is based on durable molecular and structural changes within the brain. Quoting from the Textbook of Medical Physiology by Arthur C. Guyton (W.B. Saunders Company, Philadelphia, 1986):

We know that secondary memory does not depend on continued activity of the nervous system, because the brain can be TOTALLY INACTIVATED (emphasis added) by cooling, by general anesthesia, by hypoxia, by ischemia, or by any method, and yet secondary memories that have been previously stored are still retained when the brain becomes active once again.

This is known from direct clinical experience with surgical deep hypothermia, for which complete shutdown of brain electrical activity (electrocortical silence) is not only permissible, but desirable for good neurological outcome.

See the article here:
Alcor: FAQ – Technical

Recommendation and review posted by Alexandra Lee Anderson

Wiley Interdisciplinary Reviews: Nanomedicine and …

Impact Factor: 4.239 Read, cite the journal, or submit your paper to keep contributing to the success of WIREs Nanomedicine and Nanobiotechnology

NanoMedicine-2013 is a dedicated event for the nanotech community and aims to offer professionals in the field a multidisciplinary platform to learn more about the latest scientific updates and industrial standards. Nanomedicine-2013 will consist of six tracks covering current advances in many aspects of nano-medicine R & D and business. The conference will consist of keynote forum, panel discussions, free communication, poster presentations and an exhibition. Through these dynamic scientific and social events, you will have many opportunities to network and to form potential business collaborations with participants from all over the world.

From 2012 (Volume 4), access to the full content of WIREs Nanomedicine and Nanobiotechnology is through a subscription only. Subscribe here or use our easy online library recommendation form to recommend this title to your librarian today.

If your institution opted-in last year, you will retain access to content back to 2009, including all of our special collections.

Never miss an issue! Get the table of contents emailed to your inbox for free each time an issue is published online. Under Journal Tools:

And don’t forget to follow us on

!

More here:
Wiley Interdisciplinary Reviews: Nanomedicine and …

Recommendation and review posted by Alexandra Lee Anderson

CCNE | Northeastern University

Welcome!

The NIH-funded Northeastern University Center for Translational Cancer Nanomedicine (CTCN) was established in September 2010 as part of Phase 2 of the National Cancer Institute’s Alliance for Nanotechnology in Cancer program with collaborators at Beth Israel Deaconess Hospital; Harvard Medical School; Tufts University, Auburn University and Nemucore Medical Innovations, Inc. The CTCN will utilize the support and facilities of the NU-based Center for High-rate Nanomanufacturing.

Northeastern University CTCN is one of only nine Centers of Cancer Nanotechnology Excellence (CCNE) across the country that has been awarded a five-year $13.5 million grant from the NCI Alliance in an open nationwide competition.

Building upon Northeasterns strong base of interdisciplinary nanotechnology research, the center will create new drugs that target cancer cells, advance technology on how nanocarriers deliver these drugs, and utilize imaging tools that track how they travel through the body. To enable the translation of these nanomedicines from bench to bedside, test batches of the nanopreparations will be developed for preclinical use to meet FDA standards for further clinical testing. The team will also develop semi-industrial and industrial processes to scale up their production.

Cross-disciplinary collaboration will enable integration of the fundamental biological knowledge base with physical science and engineering approaches for intimate involvement in scale-up and manufacture to rapidly translate bench research into animal testing and GMP production and to narrow the gap between discovery and development of anticancer therapeutics. The CTCN will concentrate on multifunctional, targeted devices that will bypass current biological barriers to delivery of multiple therapeutic agents at high local concentrations, with appropriate timing, directly to cancer cells.

Read the original:
CCNE | Northeastern University

Recommendation and review posted by Alexandra Lee Anderson

IBM Research: Ninja polymers

Creating a hydrogel from the polymers

Through the precise tailoring of the ninja polymers, researchers were able to create macromolecules – molecular structures containing a large number of atoms – which combine water solubility, a positive charge, and biodegradability. When mixed with water and heated to normal body temperature, the polymers self-assemble, swelling into a synthetic hydrogel that is easy to manipulate.

When applied to contaminated surfaces, the hydrogel’s positive charge attracts negatively charged microbial membranes, like stars and planets being pulled into a black hole. However, unlike other antimicrobials that target the internal machinery of bacteria to try to prevent it from replicating, this hydrogel destroys the bacteria by rupturing the bacteria’s membrane, rendering it completely unable to regenerate or spread.

The hydrogel is comprised of more than 90 percent water, making it easy to handle and apply to surfaces. It also makes it potentially viable for eventual inclusion in applications like creams or injectable therapeutics for wound healing, implant and catheter coatings, skin infections or even orifice barriers. It is the first-ever to be biodegradable, biocompatible and non-toxic, potentially making it an ideal tool to combat serious health hazards facing hospital workers, visitors and patients.

The IBM scientists in the nanomedicine polymer program along with the Institute of Bioengineering and Nanotechnology have taken this research a step further and have made a nanomedicine breakthrough in which they converted common plastic materials like polyethylene terephthalate (PET) into non-toxic and biocompatible materials designed to specifically target and attack fungal infections.BCC Research reported that the treatment cost for fungal infections was $3 billion worldwide in 2010 andis expected to increase to $6 billion in 2014. In this breakthrough, the researchers identified a novel self-assembly process for broken down PET, the primary material in plastic water bottles, in which ‘super’ molecules are formed through a hydrogen bond and serve as drug carriers targeting fungal infections in the body. Demonstrating characteristics like electrostatic charge similar to polymers, the molecules are able to break through bacterial membranes and eradicate fungus, then biodegrade in the body naturally. This is important to treat eye infections associated with contact lenses, and bloodstream infections like Candida.

Follow this link:
IBM Research: Ninja polymers

Recommendation and review posted by Alexandra Lee Anderson