Page 19«..10..17181920

Category : Nanomedicine

Cancer Stem Cells as Preferential Target for Personalized Cancer Nanomedicine – Video



Cancer Stem Cells as Preferential Target for Personalized Cancer Nanomedicine
Chair: Prof. Dr. Jan Mollenhauer, NanoCAN, University of Southern Denmark, Odense (DK) Session: Targeted and Personalized Cancer Nanomedicine 2 Speaker: Prof…

By: TAUVOD

Follow this link:

Cancer Stem Cells as Preferential Target for Personalized Cancer Nanomedicine – Video

Recommendation and review posted by Alexandra Lee Anderson

Panel – The Regulation Environment in Nanomedicine — The Step to the Last Phase of Translation – Video



Panel – The Regulation Environment in Nanomedicine — The Step to the Last Phase of Translation
Participants: -Dr. Falk Ehmann, Scientific Support and Projects, European Medicines Agency, London (UK) -Dr. Kumiko Sakai-Kato, National Institute of Health …

By: TAUVOD

Read the original here:

Panel – The Regulation Environment in Nanomedicine — The Step to the Last Phase of Translation – Video

Recommendation and review posted by Alexandra Lee Anderson

Panel – The Horizon of Nanomedicine and Targeted Drug Delivery – Video



Panel – The Horizon of Nanomedicine and Targeted Drug Delivery
“Clinical Nanomedicine Targeted Medicine”, The European CLINAM ETPN Summit, June 23-26, 2013.

By: TAUVOD

Read more from the original source:

Panel – The Horizon of Nanomedicine and Targeted Drug Delivery – Video

Recommendation and review posted by Alexandra Lee Anderson

Nanomedicine Against Malaria: Use of Poly-based Nanovectors for the Drug Delivery to Plasmodium – Video



Nanomedicine Against Malaria: Use of Poly-based Nanovectors for the Drug Delivery to Plasmodium
Speaker: Prof. Dr. Xavier Fernndez Busquets, PhD, Barcelona Centre for International Health Research, Research Associate, Institute for Bioengineering of Ca…

By: TAUVOD

Go here to see the original:

Nanomedicine Against Malaria: Use of Poly-based Nanovectors for the Drug Delivery to Plasmodium – Video

Recommendation and review posted by Alexandra Lee Anderson

Mining Genome Information for New Starting Points in Personalized Cancer Nanomedicine – Video



Mining Genome Information for New Starting Points in Personalized Cancer Nanomedicine
Speaker: Prof. Dr. Jan Mollenhauer, NanoCAN, University of Southern Denmark (DK) “Clinical Nanomedicine Targeted Medicine”, The European CLINAM ETPN Summ…

By: TAUVOD

View original post here:

Mining Genome Information for New Starting Points in Personalized Cancer Nanomedicine – Video

Recommendation and review posted by Alexandra Lee Anderson

NANOMEDICINE HANGOUT1 – Video



NANOMEDICINE HANGOUT1

By: NanoMedicine

Read the rest here:

NANOMEDICINE HANGOUT1 – Video

Recommendation and review posted by Alexandra Lee Anderson

NANOMEDICINE HANGOUT – Video



NANOMEDICINE HANGOUT

By: John Bennett

Link:

NANOMEDICINE HANGOUT – Video

Recommendation and review posted by Alexandra Lee Anderson

Nanomedicine: towards development of patient-friendly drug-delivery systems – Video



Nanomedicine: towards development of patient-friendly drug-delivery systems
ES-Cancer Focus Group. Third Journal Club: Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications.

By: Egypt Scholars Inc.

Visit link:

Nanomedicine: towards development of patient-friendly drug-delivery systems – Video

Recommendation and review posted by Alexandra Lee Anderson

Ideas @Davos | Sonia Trigueros | Breakthroughs in Nanomedicine – Video



Ideas @Davos | Sonia Trigueros | Breakthroughs in Nanomedicine
http://www.weforum.org/ Growing tolerance to antibiotics means that there are more people dying of infection than cancer. Breakthrough discoveries in nanomed…

By: World Economic Forum

Continue reading here:

Ideas @Davos | Sonia Trigueros | Breakthroughs in Nanomedicine – Video

Recommendation and review posted by Alexandra Lee Anderson

Nanomedicine – Wikipedia, the free encyclopedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Nanomedicine research is receiving funding from the US National Institutes of Health. Of note is the funding in 2005 of a five-year plan to set up four nanomedicine centers. In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide.[2]

The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicine are used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[3][4] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[5] Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field.

Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004, and with over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year.[6] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[7] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[8][9] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[10] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[11] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[12]

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach would reduce costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[13] They could hold small drug molecules transporting them to the desired location. Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. The increased efficiency of delivery results in overall societal benefit by reducing the amount of drug needed in an equipotent preparation of said therapy, and thus reduced cost to the consumer.

Nanomedical approaches to drug delivery center on developing nanoscale particles or molecules to improve drug bioavailability. Bioavailability refers to the presence of drug molecules where they are needed in the body and where they will do the most good. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[14][15] It is all about targeting the molecules and delivering drugs with cell precision. More than $65 billion are wasted each year due to poor bioavailability. In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. The new methods of nanoengineered materials that are being developed might be effective in treating illnesses and diseases such as cancer. What nanoscientists will be able to achieve in the future is beyond current imagination. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.

Drug delivery systems, lipid- or polymer-based nanoparticles,[13] can be designed to improve the pharmacological and therapeutic properties of drugs.[16] The strength of drug delivery systems is their ability to alter the pharmacokinetics and biodistribution of the drug.[17][18] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[19] When designed to avoid the body’s defence mechanisms,[20] nanoparticles have beneficial properties that can be used to improve drug delivery. Where larger particles would have been cleared from the body, cells take up these nanoparticles because of their size. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Efficiency is important because many diseases depend upon processes within the cell and can only be impeded by drugs that make their way into the cell. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[21] Also, a drug may cause tissue damage, but with drug delivery, regulated drug release can eliminate the problem. If a drug is cleared too quickly from the body, this could force a patient to use high doses, but with drug delivery systems clearance can be reduced by altering the pharmacokinetics of the drug. Poor biodistribution is a problem that can affect normal tissues through widespread distribution, but the particulates from drug delivery systems lower the volume of distribution and reduce the effect on non-target tissue. Potential nanodrugs will work by very specific and well-understood mechanisms; one of the major impacts of nanotechnology and nanoscience will be in leading development of completely new drugs with more useful behavior and less side effects. Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. This toxicity could include (but not limited to) hepatotoxicity, nephrotoxicity etc. and can have long term impacts not easily evaluated in short term in-vivo clinical trials either in animals or humans. Since the degradation of polymers to either their monomers or other degradation products in the body cannot be accurately predicted (unclear metabolic pathway), this is a real risk, specially in medicines intended for long term patient use. Even if the toxicity is ignored, there is additional hepatic load of metabolism, again an area of concern for long term medication. The major advantages of polymers is stability, lower cost and predictable characterisation, so the formulation chemists prefer this. However, in the patient’s body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients). It is greatly observed that[who?] nanoparticles are promising tools for the advancement of drug delivery, medical imaging, and as diagnostic sensors. However, the biodistribution of these nanoparticles is still imperfect due to the complex host’s reactions to nano- and microsized materials[14] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. For example, current research in the excretory systems of mice shows the ability of gold composites to selectively target certain organs based on their size and charge. These composites are encapsulated by a dendrimer and assigned a specific charge and size. Positively-charged gold nanoparticles were found to enter the kidneys while negatively-charged gold nanoparticles remained in the liver and spleen. It is suggested that the positive surface charge of the nanoparticle decreases the rate of opsonization of nanoparticles in the liver, thus affecting the excretory pathway. Even at a relatively small size of 5nm, though, these particles can become compartmentalized in the peripheral tissues, and will therefore accumulate in the body over time. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[22]

Nanoparticles are also used to circumvent multidrug resistance (MDR) mechanisms.[23] Mechanisms of MDR include decreased uptake of drugs, reduced intracellular drug concentration by activation of the efflux transporters, modifications in cellular pathways by altering cell cycle checkpoints, increased metabolism of drugs, induced emergency response genes to impair apoptotic pathways and altered DNA repair mechanisms.

Original post:

Nanomedicine – Wikipedia, the free encyclopedia

Recommendation and review posted by Alexandra Lee Anderson